ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07791
20
4

Depth Completion Using a View-constrained Deep Prior

21 January 2020
P. Ghosh
Vibhav Vineet
L. Davis
Abhinav Shrivastava
Sudipta N. Sinha
Neel Joshi
    MDE
ArXivPDFHTML
Abstract

Recent work has shown that the structure of convolutional neural networks (CNNs) induces a strong prior that favors natural images. This prior, known as a deep image prior (DIP), is an effective regularizer in inverse problems such as image denoising and inpainting. We extend the concept of the DIP to depth images. Given color images and noisy and incomplete target depth maps, we optimize a randomly-initialized CNN model to reconstruct a depth map restored by virtue of using the CNN network structure as a prior combined with a view-constrained photo-consistency loss. This loss is computed using images from a geometrically calibrated camera from nearby viewpoints. We apply this deep depth prior for inpainting and refining incomplete and noisy depth maps within both binocular and multi-view stereo pipelines. Our quantitative and qualitative evaluation shows that our refined depth maps are more accurate and complete, and after fusion, produces dense 3D models of higher quality.

View on arXiv
Comments on this paper