ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07455
6
2

Designing for the Long Tail of Machine Learning

21 January 2020
Martin Lindvall
J. Molin
    HAI
ArXivPDFHTML
Abstract

Recent technical advances has made machine learning (ML) a promising component to include in end user facing systems. However, user experience (UX) practitioners face challenges in relating ML to existing user-centered design processes and how to navigate the possibilities and constraints of this design space. Drawing on our own experience, we characterize designing within this space as navigating trade-offs between data gathering, model development and designing valuable interactions for a given model performance. We suggest that the theoretical description of how machine learning performance scales with training data can guide designers in these trade-offs as well as having implications for prototyping. We exemplify the learning curve's usage by arguing that a useful pattern is to design an initial system in a bootstrap phase that aims to exploit the training effect of data collected at increasing orders of magnitude.

View on arXiv
Comments on this paper