ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05609
17
26

Schema2QA: High-Quality and Low-Cost Q&A Agents for the Structured Web

16 January 2020
Silei Xu
Giovanni Campagna
Jian Li
M. Lam
ArXivPDFHTML
Abstract

Building a question-answering agent currently requires large annotated datasets, which are prohibitively expensive. This paper proposes Schema2QA, an open-source toolkit that can generate a Q&A system from a database schema augmented with a few annotations for each field. The key concept is to cover the space of possible compound queries on the database with a large number of in-domain questions synthesized with the help of a corpus of generic query templates. The synthesized data and a small paraphrase set are used to train a novel neural network based on the BERT pretrained model. We use Schema2QA to generate Q&A systems for five Schema.org domains, restaurants, people, movies, books and music, and obtain an overall accuracy between 64% and 75% on crowdsourced questions for these domains. Once annotations and paraphrases are obtained for a Schema.org schema, no additional manual effort is needed to create a Q&A agent for any website that uses the same schema. Furthermore, we demonstrate that learning can be transferred from the restaurant to the hotel domain, obtaining a 64% accuracy on crowdsourced questions with no manual effort. Schema2QA achieves an accuracy of 60% on popular restaurant questions that can be answered using Schema.org. Its performance is comparable to Google Assistant, 7% lower than Siri, and 15% higher than Alexa. It outperforms all these assistants by at least 18% on more complex, long-tail questions.

View on arXiv
Comments on this paper