14
3

ImagineNet: Restyling Apps Using Neural Style Transfer

Abstract

This paper presents ImagineNet, a tool that uses a novel neural style transfer model to enable end-users and app developers to restyle GUIs using an image of their choice. Former neural style transfer techniques are inadequate for this application because they produce GUIs that are illegible and hence nonfunctional. We propose a neural solution by adding a new loss term to the original formulation, which minimizes the squared error in the uncentered cross-covariance of features from different levels in a CNN between the style and output images. ImagineNet retains the details of GUIs, while transferring the colors and textures of the art. We presented GUIs restyled with ImagineNet as well as other style transfer techniques to 50 evaluators and all preferred those of ImagineNet. We show how ImagineNet can be used to restyle (1) the graphical assets of an app, (2) an app with user-supplied content, and (3) an app with dynamically generated GUIs.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.