32
68

Structured Consistency Loss for semi-supervised semantic segmentation

Abstract

The consistency loss has played a key role in solving problems in recent studies on semi-supervised learning. Yet extant studies with the consistency loss are limited to its application to classification tasks; extant studies on semi-supervised semantic segmentation rely on pixel-wise classification, which does not reflect the structured nature of characteristics in prediction. We propose a structured consistency loss to address this limitation of extant studies. Structured consistency loss promotes consistency in inter-pixel similarity between teacher and student networks. Specifically, collaboration with CutMix optimizes the efficient performance of semi-supervised semantic segmentation with structured consistency loss by reducing computational burden dramatically. The superiority of proposed method is verified with the Cityscapes; The Cityscapes benchmark results with validation and with test data are 81.9 mIoU and 83.84 mIoU respectively. This ranks the first place on the pixel-level semantic labeling task of Cityscapes benchmark suite. To the best of our knowledge, we are the first to present the superiority of state-of-the-art semi-supervised learning in semantic segmentation.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.