ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.03195
13
16

GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints

9 January 2020
Émilie Chouzenoux
Victor Elvira
ArXivPDFHTML
Abstract

Modeling and inference with multivariate sequences is central in a number of signal processing applications such as acoustics, social network analysis, biomedical, and finance, to name a few. The linear-Gaussian state-space model is a common way to describe a time series through the evolution of a hidden state, with the advantage of presenting a simple inference procedure due to the celebrated Kalman filter. A fundamental question when analyzing multivariate sequences is the search for relationships between their entries (or the modeled hidden states), especially when the inherent structure is a non-fully connected graph. In such context, graphical modeling combined with parsimony constraints allows to limit the proliferation of parameters and enables a compact data representation which is easier to interpret by the experts. In this work, we propose a novel expectation-minimization algorithm for estimating the linear matrix operator in the state equation of a linear-Gaussian state-space model. Lasso regularization is included in the M-step, that we solved using a proximal splitting Douglas-Rachford algorithm. Numerical experiments illustrate the benefits of the proposed model and inference technique, named GraphEM, over competitors relying on Granger causality.

View on arXiv
Comments on this paper