ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02585
23
17

Learning Dynamic and Personalized Comorbidity Networks from Event Data using Deep Diffusion Processes

8 January 2020
Zhaozhi Qian
Ahmed Alaa
Alexis Bellot
J. Rashbass
M. Schaar
    DiffM
    MedIm
ArXivPDFHTML
Abstract

Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals. In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition. Learning such temporal patterns from event data is crucial for understanding disease pathology and predicting prognoses. To this end, we develop deep diffusion processes (DDP) to model "dynamic comorbidity networks", i.e., the temporal relationships between comorbid disease onsets expressed through a dynamic graph. A DDP comprises events modelled as a multi-dimensional point process, with an intensity function parameterized by the edges of a dynamic weighted graph. The graph structure is modulated by a neural network that maps patient history to edge weights, enabling rich temporal representations for disease trajectories. The DDP parameters decouple into clinically meaningful components, which enables serving the dual purpose of accurate risk prediction and intelligible representation of disease pathology. We illustrate these features in experiments using cancer registry data.

View on arXiv
Comments on this paper