ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.02504
17
34

High Performance Depthwise and Pointwise Convolutions on Mobile Devices

3 January 2020
Pengfei Zhang
Eric Lo
Baotong Lu
ArXivPDFHTML
Abstract

Lightweight convolutional neural networks (e.g., MobileNets) are specifically designed to carry out inference directly on mobile devices. Among the various lightweight models, depthwise convolution (DWConv) and pointwise convolution (PWConv) are their key operations. In this paper, we observe that the existing implementations of DWConv and PWConv are not well utilizing the ARM processors in the mobile devices, and exhibit lots of cache misses under multi-core and poor data reuse at register level. We propose techniques to re-optimize the implementations of DWConv and PWConv based on ARM architecture. Experimental results show that our implementation can respectively achieve a speedup of up to 5.5x and 2.1x against TVM (Chen et al. 2018) on DWConv and PWConv.

View on arXiv
Comments on this paper