ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.01565
11
95

Stance Detection Benchmark: How Robust Is Your Stance Detection?

6 January 2020
Benjamin Schiller
Johannes Daxenberger
Iryna Gurevych
ArXivPDFHTML
Abstract

Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim and has become a key component in applications like fake news detection, claim validation, and argument search. However, while stance is easily detected by humans, machine learning models are clearly falling short of this task. Given the major differences in dataset sizes and framing of StD (e.g. number of classes and inputs), we introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning (MDL) setting, as well as from related tasks via transfer learning. Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets. Yet, the models still perform well below human capabilities and even simple adversarial attacks severely hurt the performance of MDL models. Deeper investigation into this phenomenon suggests the existence of biases inherited from multiple datasets by design. Our analysis emphasizes the need of focus on robustness and de-biasing strategies in multi-task learning approaches. The benchmark dataset and code is made available.

View on arXiv
Comments on this paper