LIVEJoin the current RTAI Connect sessionJoin now

16
0

Reject Illegal Inputs with Generative Classifier Derived from Any Discriminative Classifier

Abstract

Generative classifiers have been shown promising to detect illegal inputs including adversarial examples and out-of-distribution samples. Supervised Deep Infomax~(SDIM) is a scalable end-to-end framework to learn generative classifiers. In this paper, we propose a modification of SDIM termed SDIM-\emph{logit}. Instead of training generative classifier from scratch, SDIM-\emph{logit} first takes as input the logits produced any given discriminative classifier, and generate logit representations; then a generative classifier is derived by imposing statistical constraints on logit representations. SDIM-\emph{logit} could inherit the performance of the discriminative classifier without loss. SDIM-\emph{logit} incurs a negligible number of additional parameters, and can be efficiently trained with base classifiers fixed. We perform \emph{classification with rejection}, where test samples whose class conditionals are smaller than pre-chosen thresholds will be rejected without predictions. Experiments on illegal inputs, including adversarial examples, samples with common corruptions, and out-of-distribution~(OOD) samples show that allowed to reject a portion of test samples, SDIM-\emph{logit} significantly improves the performance on the left test sets.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.