ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.12843
29
72

Causal-Anticausal Decomposition of Speech using Complex Cepstrum for Glottal Source Estimation

30 December 2019
Thomas Drugman
Baris Bozkurt
Thierry Dutoit
ArXiv (abs)PDFHTML
Abstract

Complex cepstrum is known in the literature for linearly separating causal and anticausal components. Relying on advances achieved by the Zeros of the Z-Transform (ZZT) technique, we here investigate the possibility of using complex cepstrum for glottal flow estimation on a large-scale database. Via a systematic study of the windowing effects on the deconvolution quality, we show that the complex cepstrum causal-anticausal decomposition can be effectively used for glottal flow estimation when specific windowing criteria are met. It is also shown that this complex cepstral decomposition gives similar glottal estimates as obtained with the ZZT method. However, as complex cepstrum uses FFT operations instead of requiring the factoring of high-degree polynomials, the method benefits from a much higher speed. Finally in our tests on a large corpus of real expressive speech, we show that the proposed method has the potential to be used for voice quality analysis.

View on arXiv
Comments on this paper