ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.12825
18
15

Neural Architecture Search on Acoustic Scene Classification

30 December 2019
Jixiang Li
Chuming Liang
Bo-Wen Zhang
Zhao Wang
Fei Xiang
Xiangxiang Chu
ArXivPDFHTML
Abstract

Convolutional neural networks are widely adopted in Acoustic Scene Classification (ASC) tasks, but they generally carry a heavy computational burden. In this work, we propose a lightweight yet high-performing baseline network inspired by MobileNetV2, which replaces square convolutional kernels with unidirectional ones to extract features alternately in temporal and frequency dimensions. Furthermore, we explore a dynamic architecture space built on the basis of the proposed baseline with the recent Neural Architecture Search (NAS) paradigm, which first trains a supernet that incorporates all candidate networks and then applies a well-known evolutionary algorithm NSGA-II to discover more efficient networks with higher accuracy and lower computational cost. Experimental results demonstrate that our searched network is competent in ASC tasks, which achieves 90.3% F1-score on the DCASE2018 task 5 evaluation set, marking a new state-of-the-art performance while saving 25% of FLOPs compared to our baseline network.

View on arXiv
Comments on this paper