ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.12405
47
3
v1v2 (latest)

A Genetic Algorithm based Kernel-size Selection Approach for a Multi-column Convolutional Neural Network

28 December 2019
Animesh Singh
Sandip Saha
Ritesh Sarkhel
M. Kundu
M. Nasipuri
N. Das
ArXiv (abs)PDFHTMLGithub (1★)
Abstract

Deep neural network-based architectures give promising results in various domains including pattern recognition. Finding the optimal combination of the hyper-parameters of such a large-sized architecture is tedious and requires a large number of laboratory experiments. But, identifying the optimal combination of a hyper-parameter or appropriate kernel size for a given architecture of deep learning is always a challenging and tedious task. Here, we introduced a genetic algorithm-based technique to reduce the efforts of finding the optimal combination of a hyper-parameter (kernel size) of a convolutional neural network-based architecture. The method is evaluated on three popular datasets of different handwritten Bangla characters and digits. The implementation of the proposed methodology can be found in the following link: https://github.com/DeepQn/GA-Based-Kernel-Size.

View on arXiv
Comments on this paper