ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.08113
24
40

Improved Surrogates in Inertial Confinement Fusion with Manifold and Cycle Consistencies

17 December 2019
Rushil Anirudh
Jayaraman J. Thiagarajan
P. Bremer
B. Spears
    AI4CE
ArXivPDFHTML
Abstract

Neural networks have become very popular in surrogate modeling because of their ability to characterize arbitrary, high dimensional functions in a data driven fashion. This paper advocates for the training of surrogates that are consistent with the physical manifold -- i.e., predictions are always physically meaningful, and are cyclically consistent -- i.e., when the predictions of the surrogate, when passed through an independently trained inverse model give back the original input parameters. We find that these two consistencies lead to surrogates that are superior in terms of predictive performance, more resilient to sampling artifacts, and tend to be more data efficient. Using Inertial Confinement Fusion (ICF) as a test bed problem, we model a 1D semi-analytic numerical simulator and demonstrate the effectiveness of our approach. Code and data are available at https://github.com/rushilanirudh/macc/

View on arXiv
Comments on this paper