ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07773
71
47
v1v2v3v4 (latest)

MEDIRL: Predicting the Visual Attention of Drivers via Maximum Entropy Deep Inverse Reinforcement Learning

17 December 2019
Sonia Baee
Erfan Pakdamanian
Inki Kim
Lu Feng
Vicente Ordonez
Laura E. Barnes
ArXiv (abs)PDFHTML
Abstract

Inspired by human visual attention, we introduce a Maximum Entropy Deep Inverse Reinforcement Learning (MEDIRL) framework for modeling the visual attention allocation of drivers in imminent rear-end collisions. MEDIRL is composed of visual, driving, and attention modules. Given a front-view driving video and corresponding eye fixations from humans, the visual and driving modules extract generic and driving-specific visual features, respectively. Finally, the attention module learns the intrinsic task-sensitive reward functions induced by eye fixation policies recorded from attentive drivers. MEDIRL uses the learned policies to predict visual attention allocation of drivers. We also introduce EyeCar, a new driver visual attention dataset during accident-prone situations. We conduct comprehensive experiments and show that MEDIRL outperforms previous state-of-the-art methods on driving task-related visual attention allocation on the following large-scale driving attention benchmark datasets: DR(eye)VE, BDD-A, and DADA-2000. The code and dataset are provided for reproducibility.

View on arXiv
Comments on this paper