ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07358
6
92

Blind Denoising Autoencoder

11 December 2019
A. Majumdar
ArXivPDFHTML
Abstract

The term blind denoising refers to the fact that the basis used for denoising is learnt from the noisy sample itself during denoising. Dictionary learning and transform learning based formulations for blind denoising are well known. But there has been no autoencoder based solution for the said blind denoising approach. So far autoencoder based denoising formulations have learnt the model on a separate training data and have used the learnt model to denoise test samples. Such a methodology fails when the test image (to denoise) is not of the same kind as the models learnt with. This will be first work, where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method performs better than dictionary learning (KSVD), transform learning, sparse stacked denoising autoencoder and the gold standard BM3D algorithm.

View on arXiv
Comments on this paper