ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.07225
13
68

Graph-based Neural Sentence Ordering

16 December 2019
Yongjing Yin
Linfeng Song
Jinsong Su
Jiali Zeng
Chulun Zhou
Jiebo Luo
    GNN
ArXivPDFHTML
Abstract

Sentence ordering is to restore the original paragraph from a set of sentences. It involves capturing global dependencies among sentences regardless of their input order. In this paper, we propose a novel and flexible graph-based neural sentence ordering model, which adopts graph recurrent network \cite{Zhang:acl18} to accurately learn semantic representations of the sentences. Instead of assuming connections between all pairs of input sentences, we use entities that are shared among multiple sentences to make more expressive graph representations with less noise. Experimental results show that our proposed model outperforms the existing state-of-the-art systems on several benchmark datasets, demonstrating the effectiveness of our model. We also conduct a thorough analysis on how entities help the performance.

View on arXiv
Comments on this paper