ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05848
60
94
v1v2v3v4v5v6 (latest)

EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure

12 December 2019
Magnus Själander
Magnus Jahre
G. Tufte
Nico Reissmann
ArXiv (abs)PDFHTML
Abstract

The pursuit of many research questions requires massive computational resources. State-of-the-art research in physical processes using simulations, the training of neural networks for deep learning, or the analysis of big data are all dependent on the availability of sufficient and performant computational resources. For such research, access to a high-performance computing infrastructure is indispensable. Many scientific workloads from such research domains are inherently parallel and can benefit from the data-parallel architecture of general purpose graphics processing units (GPGPUs). However, GPGPU resources are scarce at Norway's national infrastructure. EPIC is a GPGPU enabled computing research infrastructure at NTNU. It enables NTNU's researchers to perform experiments that otherwise would be impossible, as time-to-solution would simply take too long.

View on arXiv
Comments on this paper