ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05179
16
6

Tensor Completion via Gaussian Process Based Initialization

11 December 2019
Yermek Kapushev
Ivan Oseledets
Evgeny Burnaev
ArXivPDFHTML
Abstract

In this paper, we consider the tensor completion problem representing the solution in the tensor train (TT) format. It is assumed that tensor is high-dimensional, and tensor values are generated by an unknown smooth function. The assumption allows us to develop an efficient initialization scheme based on Gaussian Process Regression and TT-cross approximation technique. The proposed approach can be used in conjunction with any optimization algorithm that is usually utilized in tensor completion problems. We empirically justify that in this case the reconstruction error improves compared to the tensor completion with random initialization. As an additional benefit, our technique automatically selects rank thanks to using the TT-cross approximation technique.

View on arXiv
Comments on this paper