ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.03807
11
13

An empirical GGG-Wishart prior for sparse high-dimensional Gaussian graphical models

9 December 2019
Chang-rui Liu
Ryan Martin
ArXivPDFHTML
Abstract

In Gaussian graphical models, the zero entries in the precision matrix determine the dependence structure, so estimating that sparse precision matrix and, thereby, learning this underlying structure, is an important and challenging problem. We propose an empirical version of the GGG-Wishart prior for sparse precision matrices, where the prior mode is informed by the data in a suitable way. Paired with a prior on the graph structure, a marginal posterior distribution for the same is obtained that takes the form of a ratio of two GGG-Wishart normalizing constants. We show that this ratio can be easily and accurately computed using a Laplace approximation, which leads to fast and efficient posterior sampling even in high-dimensions. Numerical results demonstrate the proposed method's superior performance, in terms of speed and accuracy, across a variety of settings, and theoretical support is provided in the form of a posterior concentration rate theorem.

View on arXiv
Comments on this paper