ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.03334
16
28

Explaining Sequence-Level Knowledge Distillation as Data-Augmentation for Neural Machine Translation

6 December 2019
Mitchell A. Gordon
Kevin Duh
ArXivPDFHTML
Abstract

Sequence-level knowledge distillation (SLKD) is a model compression technique that leverages large, accurate teacher models to train smaller, under-parameterized student models. Why does pre-processing MT data with SLKD help us train smaller models? We test the common hypothesis that SLKD addresses a capacity deficiency in students by "simplifying" noisy data points and find it unlikely in our case. Models trained on concatenations of original and "simplified" datasets generalize just as well as baseline SLKD. We then propose an alternative hypothesis under the lens of data augmentation and regularization. We try various augmentation strategies and observe that dropout regularization can become unnecessary. Our methods achieve BLEU gains of 0.7-1.2 on TED Talks.

View on arXiv
Comments on this paper