ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.02386
8
18

The Search for Sparse, Robust Neural Networks

5 December 2019
J. Cosentino
Federico Zaiter
Dan Pei
Jun Zhu
    AAML
    OOD
ArXivPDFHTML
Abstract

Recent work on deep neural network pruning has shown there exist sparse subnetworks that achieve equal or improved accuracy, training time, and loss using fewer network parameters when compared to their dense counterparts. Orthogonal to pruning literature, deep neural networks are known to be susceptible to adversarial examples, which may pose risks in security- or safety-critical applications. Intuition suggests that there is an inherent trade-off between sparsity and robustness such that these characteristics could not co-exist. We perform an extensive empirical evaluation and analysis testing the Lottery Ticket Hypothesis with adversarial training and show this approach enables us to find sparse, robust neural networks. Code for reproducing experiments is available here: https://github.com/justincosentino/robust-sparse-networks.

View on arXiv
Comments on this paper