ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01394
24
33

RGPNet: A Real-Time General Purpose Semantic Segmentation

3 December 2019
Elahe Arani
Shabbir Marzban
Andrei Pata
Bahram Zonooz
    SSeg
ArXivPDFHTML
Abstract

We propose a real-time general purpose semantic segmentation architecture, RGPNet, which achieves significant performance gain in complex environments. RGPNet consists of a light-weight asymmetric encoder-decoder and an adaptor. The adaptor helps preserve and refine the abstract concepts from multiple levels of distributed representations between the encoder and decoder. It also facilitates the gradient flow from deeper layers to shallower layers. Our experiments demonstrate that RGPNet can generate segmentation results in real-time with comparable accuracy to the state-of-the-art non-real-time heavy models. Moreover, towards green AI, we show that using an optimized label-relaxation technique with progressive resizing can reduce the training time by up to 60% while preserving the performance. We conclude that RGPNet obtains a better speed-accuracy trade-off across multiple datasets.

View on arXiv
Comments on this paper