ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00879
23
62

Improving Question Generation with Sentence-level Semantic Matching and Answer Position Inferring

2 December 2019
Xiyao Ma
Qile Zhu
Yanlin Zhou
Xiaolin Li
D. Wu
    3DV
ArXivPDFHTML
Abstract

Taking an answer and its context as input, sequence-to-sequence models have made considerable progress on question generation. However, we observe that these approaches often generate wrong question words or keywords and copy answer-irrelevant words from the input. We believe that lacking global question semantics and exploiting answer position-awareness not well are the key root causes. In this paper, we propose a neural question generation model with two concrete modules: sentence-level semantic matching and answer position inferring. Further, we enhance the initial state of the decoder by leveraging the answer-aware gated fusion mechanism. Experimental results demonstrate that our model outperforms the state-of-the-art (SOTA) models on SQuAD and MARCO datasets. Owing to its generality, our work also improves the existing models significantly.

View on arXiv
Comments on this paper