84
8

Differential Bayesian Neural Nets

Abstract

Neural Ordinary Differential Equations (N-ODEs) are a powerful building block for learning systems, which extend residual networks to a continuous-time dynamical system. We propose a Bayesian version of N-ODEs that enables well-calibrated quantification of prediction uncertainty, while maintaining the expressive power of their deterministic counterpart. We assign Bayesian Neural Nets (BNNs) to both the drift and the diffusion terms of a Stochastic Differential Equation (SDE) that models the flow of the activation map in time. We infer the posterior on the BNN weights using a straightforward adaptation of Stochastic Gradient Langevin Dynamics (SGLD). We illustrate significantly improved stability on two synthetic time series prediction tasks and report better model fit on UCI regression benchmarks with our method when compared to its non-Bayesian counterpart.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.