On a generalization of the Jensen-Shannon divergence

The Jensen-Shannon divergence is a renown bounded symmetrization of the Kullback-Leibler divergence which does not require probability densities to have matching supports. In this paper, we introduce a vector-skew generalization of the scalar -Jensen-Bregman divergences and derive thereof the vector-skew -Jensen-Shannon divergences. We study the properties of these novel divergences and show how to build parametric families of symmetric Jensen-Shannon-type divergences. Finally, we report an iterative algorithm to numerically compute the Jensen-Shannon-type centroids for a set of probability densities belonging to a mixture family: This includes the case of the Jensen-Shannon centroid of a set of categorical distributions or normalized histograms.
View on arXiv