ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00384
91
10
v1v2v3v4v5v6 (latest)

Training Object Detectors from Few Weakly-Labeled and Many Unlabeled Images

1 December 2019
Zhaohui Yang
Miaojing Shi
Chao Xu
V. Ferrari
Yannis Avrithis
    WSOD
ArXiv (abs)PDFHTML
Abstract

Weakly-supervised object detection attempts to limit the amount of supervision by dispensing the need for bounding boxes, but still assumes image-level labels on the entire training set. In this work, we study the problem of training an object detector from one or few images with image-level labels and a larger set of completely unlabeled images. This is an extreme case of semi-supervised learning where the labeled data are not enough to bootstrap the learning of a detector. Our solution is to train a weakly-supervised student detector model from image-level pseudo-labels generated on the unlabeled set by a teacher classifier model, bootstrapped by region-level similarities to labeled images. Building upon the recent representative weakly-supervised pipeline PCL, our method can use more unlabeled images to achieve performance competitive or superior to many recent weakly-supervised detection solutions.

View on arXiv
Comments on this paper