ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00286
17
26

Training Distributed Deep Recurrent Neural Networks with Mixed Precision on GPU Clusters

30 November 2019
Alexey Svyatkovskiy
J. Kates-Harbeck
W. Tang
ArXivPDFHTML
Abstract

In this paper, we evaluate training of deep recurrent neural networks with half-precision floats. We implement a distributed, data-parallel, synchronous training algorithm by integrating TensorFlow and CUDA-aware MPI to enable execution across multiple GPU nodes and making use of high-speed interconnects. We introduce a learning rate schedule facilitating neural network convergence at up to O(100)O(100)O(100) workers. Strong scaling tests performed on clusters of NVIDIA Pascal P100 GPUs show linear runtime and logarithmic communication time scaling for both single and mixed precision training modes. Performance is evaluated on a scientific dataset taken from the Joint European Torus (JET) tokamak, containing multi-modal time series of sensory measurements leading up to deleterious events called plasma disruptions, and the benchmark Large Movie Review Dataset~\cite{imdb}. Half-precision significantly reduces memory and network bandwidth, allowing training of state-of-the-art models with over 70 million trainable parameters while achieving a comparable test set performance as single precision.

View on arXiv
Comments on this paper