ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12825
17
30

Option-Critic in Cooperative Multi-agent Systems

28 November 2019
Jhelum Chakravorty
Nadeem Ward
Julien Roy
Maxime Chevalier-Boisvert
Sumana Basu
Andrei Lupu
Doina Precup
ArXivPDFHTML
Abstract

In this paper, we investigate learning temporal abstractions in cooperative multi-agent systems, using the options framework (Sutton et al, 1999). First, we address the planning problem for the decentralized POMDP represented by the multi-agent system, by introducing a \emph{common information approach}. We use the notion of \emph{common beliefs} and broadcasting to solve an equivalent centralized POMDP problem. Then, we propose the Distributed Option Critic (DOC) algorithm, which uses centralized option evaluation and decentralized intra-option improvement. We theoretically analyze the asymptotic convergence of DOC and build a new multi-agent environment to demonstrate its validity. Our experiments empirically show that DOC performs competitively against baselines and scales with the number of agents.

View on arXiv
Comments on this paper