42
15

Emotional Neural Language Generation Grounded in Situational Contexts

Abstract

Emotional language generation is one of the keys to human-like artificial intelligence. Humans use different type of emotions depending on the situation of the conversation. Emotions also play an important role in mediating the engagement level with conversational partners. However, current conversational agents do not effectively account for emotional content in the language generation process. To address this problem, we develop a language modeling approach that generates affective content when the dialogue is situated in a given context. We use the recently released Empathetic-Dialogues corpus to build our models. Through detailed experiments, we find that our approach outperforms the state-of-the-art method on the perplexity metric by about 5 points and achieves a higher BLEU metric score.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.