ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10416
34
17

Intermittent Demand Forecasting with Deep Renewal Processes

23 November 2019
Ali Caner Türkmen
Bernie Wang
Tim Januschowski
    AI4TS
ArXiv (abs)PDFHTML
Abstract

Intermittent demand, where demand occurrences appear sporadically in time, is a common and challenging problem in forecasting. In this paper, we first make the connections between renewal processes, and a collection of current models used for intermittent demand forecasting. We then develop a set of models that benefit from recurrent neural networks to parameterize conditional interdemand time and size distributions, building on the latest paradigm in "deep" temporal point processes. We present favorable empirical findings on discrete and continuous time intermittent demand data, validating the practical value of our approach.

View on arXiv
Comments on this paper