ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09882
6
4

Analysis of Evolutionary Behavior in Self-Learning Media Search Engines

22 November 2019
Nikki Lijing Kuang
C. Leung
ArXivPDFHTML
Abstract

The diversity of intrinsic qualities of multimedia entities tends to impede their effective retrieval. In a SelfLearning Search Engine architecture, the subtle nuances of human perceptions and deep knowledge are taught and captured through unsupervised reinforcement learning, where the degree of reinforcement may be suitably calibrated. Such architectural paradigm enables indexes to evolve naturally while accommodating the dynamic changes of user interests. It operates by continuously constructing indexes over time, while injecting progressive improvement in search performance. For search operations to be effective, convergence of index learning is of crucial importance to ensure efficiency and robustness. In this paper, we develop a Self-Learning Search Engine architecture based on reinforcement learning using a Markov Decision Process framework. The balance between exploration and exploitation is achieved through evolutionary exploration Strategies. The evolutionary index learning behavior is then studied and formulated using stochastic analysis. Experimental results are presented which corroborate the steady convergence of the index evolution mechanism. Index Term

View on arXiv
Comments on this paper