ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09344
16
4

Convolutional Mixture Density Recurrent Neural Network for Predicting User Location with WiFi Fingerprints

21 November 2019
Weizhu Qian
Fabrice Lauri
Franck Gechter
ArXivPDFHTML
Abstract

Predicting smartphone users activity using WiFi fingerprints has been a popular approach for indoor positioning in recent years. However, such a high dimensional time-series prediction problem can be very tricky to solve. To address this issue, we propose a novel deep learning model, the convolutional mixture density recurrent neural network (CMDRNN), which combines the strengths of convolutional neural networks, recurrent neural networks and mixture density networks. In our model, the CNN sub-model is employed to detect the feature of the high dimensional input, the RNN sub-model is utilized to capture the time dependency and the MDN sub-model is for predicting the final output. For validation, we conduct the experiments on the real-world dataset and the obtained results illustrate the effectiveness of our method.

View on arXiv
Comments on this paper