ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08856
7
6

Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models

20 November 2019
Redouane Lguensat
Julien Le Sommer
Sammy Metref
E. Cosme
Ronan Fablet
    AI4Cl
    AI4CE
ArXivPDFHTML
Abstract

We introduce a new strategy designed to help physicists discover hidden laws governing dynamical systems. We propose to use machine learning automatic differentiation libraries to develop hybrid numerical models that combine components based on prior physical knowledge with components based on neural networks. In these architectures, named Deep Neural Numerical Models (DNNMs), the neural network components are used as building-blocks then deployed for learning hidden variables of underlying physical laws governing dynamical systems. In this paper, we illustrate an application of DNNMs to upper ocean dynamics, more precisely the dynamics of a sea surface tracer, the Sea Surface Height (SSH). We develop an advection-based fully differentiable numerical scheme, where parts of the computations can be replaced with learnable ConvNets, and make connections with the single-layer Quasi-Geostrophic (QG) model, a baseline theory in physical oceanography developed decades ago.

View on arXiv
Comments on this paper