ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08836
11
17

Table-Of-Contents generation on contemporary documents

20 November 2019
Najah-Imane Bentabet
Rémi Juge
Sira Ferradans
    3DGS
ArXivPDFHTML
Abstract

The generation of precise and detailed Table-Of-Contents (TOC) from a document is a problem of major importance for document understanding and information extraction. Despite its importance, it is still a challenging task, especially for non-standardized documents with rich layout information such as commercial documents. In this paper, we present a new neural-based pipeline for TOC generation applicable to any searchable document. Unlike previous methods, we do not use semantic labeling nor assume the presence of parsable TOC pages in the document. Moreover, we analyze the influence of using external knowledge encoded as a template. We empirically show that this approach is only useful in a very low resource environment. Finally, we propose a new domain-specific data set that sheds some light on the difficulties of TOC generation in real-world documents. The proposed method shows better performance than the state-of-the-art on a public data set and on the newly released data set.

View on arXiv
Comments on this paper