ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08706
20
35

Controlling Neural Machine Translation Formality with Synthetic Supervision

20 November 2019
Xing Niu
Marine Carpuat
ArXivPDFHTML
Abstract

This work aims to produce translations that convey source language content at a formality level that is appropriate for a particular audience. Framing this problem as a neural sequence-to-sequence task ideally requires training triplets consisting of a bilingual sentence pair labeled with target language formality. However, in practice, available training examples are limited to English sentence pairs of different styles, and bilingual parallel sentences of unknown formality. We introduce a novel training scheme for multi-task models that automatically generates synthetic training triplets by inferring the missing element on the fly, thus enabling end-to-end training. Comprehensive automatic and human assessments show that our best model outperforms existing models by producing translations that better match desired formality levels while preserving the source meaning.

View on arXiv
Comments on this paper