ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08059
17
75

How does Early Stopping Help Generalization against Label Noise?

19 November 2019
Hwanjun Song
Minseok Kim
Dongmin Park
Jae-Gil Lee
    NoLa
ArXivPDFHTML
Abstract

Noisy labels are very common in real-world training data, which lead to poor generalization on test data because of overfitting to the noisy labels. In this paper, we claim that such overfitting can be avoided by "early stopping" training a deep neural network before the noisy labels are severely memorized. Then, we resume training the early stopped network using a "maximal safe set," which maintains a collection of almost certainly true-labeled samples at each epoch since the early stop point. Putting them all together, our novel two-phase training method, called Prestopping, realizes noise-free training under any type of label noise for practical use. Extensive experiments using four image benchmark data sets verify that our method significantly outperforms four state-of-the-art methods in test error by 0.4-8.2 percent points under existence of real-world noise.

View on arXiv
Comments on this paper