ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07347
17
1

Fast 3D Pose Refinement with RGB Images

17 November 2019
Abhinav Jain
F. Dellaert
ArXivPDFHTML
Abstract

Pose estimation is a vital step in many robotics and perception tasks such as robotic manipulation, autonomous vehicle navigation, etc. Current state-of-the-art pose estimation methods rely on deep neural networks with complicated structures and long inference times. While highly robust, they require computing power often unavailable on mobile robots. We propose a CNN-based pose refinement system which takes a coarsely estimated 3D pose from a computationally cheaper algorithm along with a bounding box image of the object, and returns a highly refined pose. Our experiments on the YCB-Video dataset show that our system can refine 3D poses to an extremely high precision with minimal training data.

View on arXiv
Comments on this paper