ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07141
17
40

Working Memory Graphs

17 November 2019
Ricky Loynd
Roland Fernandez
Asli Celikyilmaz
Adith Swaminathan
Matthew J. Hausknecht
ArXivPDFHTML
Abstract

Transformers have increasingly outperformed gated RNNs in obtaining new state-of-the-art results on supervised tasks involving text sequences. Inspired by this trend, we study the question of how Transformer-based models can improve the performance of sequential decision-making agents. We present the Working Memory Graph (WMG), an agent that employs multi-head self-attention to reason over a dynamic set of vectors representing observed and recurrent state. We evaluate WMG in three environments featuring factored observation spaces: a Pathfinding environment that requires complex reasoning over past observations, BabyAI gridworld levels that involve variable goals, and Sokoban which emphasizes future planning. We find that the combination of WMG's Transformer-based architecture with factored observation spaces leads to significant gains in learning efficiency compared to baseline architectures across all tasks. WMG demonstrates how Transformer-based models can dramatically boost sample efficiency in RL environments for which observations can be factored.

View on arXiv
Comments on this paper