ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.06634
17
120

Single Image Reflection Removal through Cascaded Refinement

15 November 2019
Chao Li
Yixiao Yang
Kun He
Stephen Lin
J. Hopcroft
ArXivPDFHTML
Abstract

We address the problem of removing undesirable reflections from a single image captured through a glass surface, which is an ill-posed, challenging but practically important problem for photo enhancement. Inspired by iterative structure reduction for hidden community detection in social networks, we propose an Iterative Boost Convolutional LSTM Network (IBCLN) that enables cascaded prediction for reflection removal. IBCLN is a cascaded network that iteratively refines the estimates of transmission and reflection layers in a manner that they can boost the prediction quality to each other, and information across steps of the cascade is transferred using an LSTM. The intuition is that the transmission is the strong, dominant structure while the reflection is the weak, hidden structure. They are complementary to each other in a single image and thus a better estimate and reduction on one side from the original image leads to a more accurate estimate on the other side. To facilitate training over multiple cascade steps, we employ LSTM to address the vanishing gradient problem, and propose residual reconstruction loss as further training guidance. Besides, we create a dataset of real-world images with reflection and ground-truth transmission layers to mitigate the problem of insufficient data. Comprehensive experiments demonstrate that the proposed method can effectively remove reflections in real and synthetic images compared with state-of-the-art reflection removal methods.

View on arXiv
Comments on this paper