ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.04822
20
9

A Capsule Network-based Model for Learning Node Embeddings

12 November 2019
Dai Quoc Nguyen
T. Nguyen
Dat Quoc Nguyen
Dinh Q. Phung
    GNN
ArXivPDFHTML
Abstract

In this paper, we focus on learning low-dimensional embeddings for nodes in graph-structured data. To achieve this, we propose Caps2NE -- a new unsupervised embedding model leveraging a network of two capsule layers. Caps2NE induces a routing process to aggregate feature vectors of context neighbors of a given target node at the first capsule layer, then feed these features into the second capsule layer to infer a plausible embedding for the target node. Experimental results show that our proposed Caps2NE obtains state-of-the-art performances on benchmark datasets for the node classification task. Our code is available at: \url{https://github.com/daiquocnguyen/Caps2NE}.

View on arXiv
Comments on this paper