ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.02736
20
71

Analysis of CNN-based remote-PPG to understand limitations and sensitivities

7 November 2019
Qi Zhan
Wenjin Wang
G. Haan
ArXivPDFHTML
Abstract

Deep learning based on Convolutional Neural Network (CNN) has shown promising results in various vision-based applications, recently also in camera-based vital signs monitoring. The CNN-based Photoplethysmography (PPG) extraction has, so far, been focused on performance rather than understanding. In this paper, we try to answer four questions with experiments aiming at improving our understanding of this methodology as it gains popularity. We conclude that the network exploits the blood absorption variation to extract the physiological signals, and that the choice and parameters (phase, spectral content, etc.) of the reference-signal may be more critical than anticipated. The availability of multiple convolutional kernels is necessary for CNN to arrive at a flexible channel combination through the spatial operation, but may not provide the same motion-robustness as a multi-site measurement using knowledge-based PPG extraction. Finally, we conclude that the PPG-related prior knowledge is still helpful for the CNN-based PPG extraction. Consequently, we recommend further investigation of hybrid CNN-based methods to include prior knowledge in their design.

View on arXiv
Comments on this paper