ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.01049
23
15

Eye Semantic Segmentation with a Lightweight Model

4 November 2019
V. Huynh
Soohyung Kim
Gueesang Lee
Hyung-Jeong Yang
    VLM
    3DV
ArXivPDFHTML
Abstract

In this paper, we present a multi-class eye segmentation method that can run the hardware limitations for real-time inference. Our approach includes three major stages: get a grayscale image from the input, segment three distinct eye region with a deep network, and remove incorrect areas with heuristic filters. Our model based on the encoder decoder structure with the key is the depthwise convolution operation to reduce the computation cost. We experiment on OpenEDS, a large scale dataset of eye images captured by a head-mounted display with two synchronized eye facing cameras. We achieved the mean intersection over union (mIoU) of 94.85% with a model of size 0.4 megabytes. The source code are available https://github.com/th2l/Eye_VR_Segmentation

View on arXiv
Comments on this paper