ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00949
11
12

Attributed Sequence Embedding

3 November 2019
Zhongfang Zhuang
Xiangnan Kong
Elke A. Rundensteiner
Jihane Zouaoui
Aditya Arora
ArXivPDFHTML
Abstract

Mining tasks over sequential data, such as clickstreams and gene sequences, require a careful design of embeddings usable by learning algorithms. Recent research in feature learning has been extended to sequential data, where each instance consists of a sequence of heterogeneous items with a variable length. However, many real-world applications often involve attributed sequences, where each instance is composed of both a sequence of categorical items and a set of attributes. In this paper, we study this new problem of attributed sequence embedding, where the goal is to learn the representations of attributed sequences in an unsupervised fashion. This problem is core to many important data mining tasks ranging from user behavior analysis to the clustering of gene sequences. This problem is challenging due to the dependencies between sequences and their associated attributes. We propose a deep multimodal learning framework, called NAS, to produce embeddings of attributed sequences. The embeddings are task independent and can be used on various mining tasks of attributed sequences. We demonstrate the effectiveness of our embeddings of attributed sequences in various unsupervised learning tasks on real-world datasets.

View on arXiv
Comments on this paper