ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00175
47
36
v1v2v3v4v5 (latest)

Hybrid Differential Dynamic Programming for Planar Manipulation Primitives

1 November 2019
Neel Doshi
F. Hogan
Alberto Rodriguez
ArXiv (abs)PDFHTML
Abstract

We present a hybrid differential dynamic programming algorithm for closed-loop execution of manipulation primitives with frictional contact switches. Planning and control of these primitives is challenging as they are hybrid, under-actuated, and stochastic. We address this by planning a trajectory over a finite horizon, considering a small number of contact switches, and generating a stabilizing controller. We evaluate the performance and computational cost of our framework in ablations studies for two primitives: planar pushing and planar pivoting. We can plan pose-to-pose trajectories from most configurations with only a couple (one to two) hybrid switches and in reasonable time (one to five seconds). We further demonstrate that our controller stabilizes these hybrid trajectories on a real pushing system. A video describing out work can be found at https://youtu.be/YGSe4cUfq6Q.

View on arXiv
Comments on this paper