ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.14210
11
1

Methodological Blind Spots in Machine Learning Fairness: Lessons from the Philosophy of Science and Computer Science

31 October 2019
Samuel Deng
Achille C. Varzi
    FaML
ArXivPDFHTML
Abstract

In the ML fairness literature, there have been few investigations through the viewpoint of philosophy, a lens that encourages the critical evaluation of basic assumptions. The purpose of this paper is to use three ideas from the philosophy of science and computer science to tease out blind spots in the assumptions that underlie ML fairness: abstraction, induction, and measurement. Through this investigation, we hope to warn of these methodological blind spots and encourage further interdisciplinary investigation in fair-ML through the framework of philosophy.

View on arXiv
Comments on this paper