ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13742
10
29

Unifying mirror descent and dual averaging

30 October 2019
A. Juditsky
Joon Kwon
Eric Moulines
ArXivPDFHTML
Abstract

We introduce and analyze a new family of first-order optimization algorithms which generalizes and unifies both mirror descent and dual averaging. Within the framework of this family, we define new algorithms for constrained optimization that combines the advantages of mirror descent and dual averaging. Our preliminary simulation study shows that these new algorithms significantly outperform available methods in some situations.

View on arXiv
Comments on this paper