ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13707
29
36

Jointly optimal dereverberation and beamforming

30 October 2019
Christoph Boeddeker
Tomohiro Nakatani
K. Kinoshita
Reinhold Haeb-Umbach
ArXivPDFHTML
Abstract

We previously proposed an optimal (in the maximum likelihood sense) convolutional beamformer that can perform simultaneous denoising and dereverberation, and showed its superiority over the widely used cascade of a WPE dereverberation filter and a conventional MPDR beamformer. However, it has not been fully investigated which components in the convolutional beamformer yield such superiority. To this end, this paper presents a new derivation of the convolutional beamformer that allows us to factorize it into a WPE dereverberation filter, and a special type of a (non-convolutional) beamformer, referred to as a wMPDR beamformer, without loss of optimality. With experiments, we show that the superiority of the convolutional beamformer in fact comes from its wMPDR part.

View on arXiv
Comments on this paper