ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13348
15
0

Sequential image processing methods for improving semantic video segmentation algorithms

29 October 2019
B. Sirmaçek
N. Botteghi
Santiago Sanchez Escalonilla Plaza
ArXivPDFHTML
Abstract

Recently, semantic video segmentation gained high attention especially for supporting autonomous driving systems. Deep learning methods made it possible to implement real time segmentation and object identification algorithms on videos. However, most of the available approaches process each video frame independently disregarding their sequential relation in time. Therefore their results suddenly miss some of the object segments in some of the frames even if they were detected properly in the earlier frames. Herein we propose two sequential probabilistic video frame analysis approaches to improve the segmentation performance of the existing algorithms. Our experiments show that using the information of the past frames we increase the performance and consistency of the state of the art algorithms.

View on arXiv
Comments on this paper