ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13105
6
28

JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment

29 October 2019
Bo Chen
Jing Zhang
Xiaobin Tang
Hong Chen
Cuiping Li
ArXivPDFHTML
Abstract

Abstract. Cross-lingual knowledge alignment is the cornerstone in building a comprehensive knowledge graph (KG), which can benefit various knowledge-driven applications. As the structures of KGs are usually sparse, attributes of entities may play an important role in aligning the entities. However, the heterogeneity of the attributes across KGs prevents from accurately embedding and comparing entities. To deal with the issue, we propose to model the interactions between attributes, instead of globally embedding an entity with all the attributes. We further propose a joint framework to merge the alignments inferred from the attributes and the structures. Experimental results show that the proposed model outperforms the state-of-art baselines by up to 38.48% HitRatio@1. The results also demonstrate that our model can infer the alignments between attributes, relationships and values, in addition to entities.

View on arXiv
Comments on this paper